Basic units#

This file implements a units library that supports registering arbitrary units, conversions between units, and math with unitized data. This library also implements a Matplotlib unit converter and registers its units with Matplotlib. This library is used in the examples to demonstrate Matplotlib's unit support. It is only maintained for the purposes of building documentation and should never be used outside of the Matplotlib documentation.

import itertools
import math

from packaging.version import parse as parse_version

import numpy as np

import matplotlib.ticker as ticker
import matplotlib.units as units


class ProxyDelegate:
    def __init__(self, fn_name, proxy_type):
        self.proxy_type = proxy_type
        self.fn_name = fn_name

    def __get__(self, obj, objtype=None):
        return self.proxy_type(self.fn_name, obj)


class TaggedValueMeta(type):
    def __init__(self, name, bases, dict):
        for fn_name in self._proxies:
            if not hasattr(self, fn_name):
                setattr(self, fn_name,
                        ProxyDelegate(fn_name, self._proxies[fn_name]))


class PassThroughProxy:
    def __init__(self, fn_name, obj):
        self.fn_name = fn_name
        self.target = obj.proxy_target

    def __call__(self, *args):
        fn = getattr(self.target, self.fn_name)
        ret = fn(*args)
        return ret


class ConvertArgsProxy(PassThroughProxy):
    def __init__(self, fn_name, obj):
        super().__init__(fn_name, obj)
        self.unit = obj.unit

    def __call__(self, *args):
        converted_args = []
        for a in args:
            try:
                converted_args.append(a.convert_to(self.unit))
            except AttributeError:
                converted_args.append(TaggedValue(a, self.unit))
        converted_args = tuple([c.get_value() for c in converted_args])
        return super().__call__(*converted_args)


class ConvertReturnProxy(PassThroughProxy):
    def __init__(self, fn_name, obj):
        super().__init__(fn_name, obj)
        self.unit = obj.unit

    def __call__(self, *args):
        ret = super().__call__(*args)
        return (NotImplemented if ret is NotImplemented
                else TaggedValue(ret, self.unit))


class ConvertAllProxy(PassThroughProxy):
    def __init__(self, fn_name, obj):
        super().__init__(fn_name, obj)
        self.unit = obj.unit

    def __call__(self, *args):
        converted_args = []
        arg_units = [self.unit]
        for a in args:
            if hasattr(a, 'get_unit') and not hasattr(a, 'convert_to'):
                # If this argument has a unit type but no conversion ability,
                # this operation is prohibited.
                return NotImplemented

            if hasattr(a, 'convert_to'):
                try:
                    a = a.convert_to(self.unit)
                except Exception:
                    pass
                arg_units.append(a.get_unit())
                converted_args.append(a.get_value())
            else:
                converted_args.append(a)
                if hasattr(a, 'get_unit'):
                    arg_units.append(a.get_unit())
                else:
                    arg_units.append(None)
        converted_args = tuple(converted_args)
        ret = super().__call__(*converted_args)
        if ret is NotImplemented:
            return NotImplemented
        ret_unit = unit_resolver(self.fn_name, arg_units)
        if ret_unit is NotImplemented:
            return NotImplemented
        return TaggedValue(ret, ret_unit)


class TaggedValue(metaclass=TaggedValueMeta):

    _proxies = {'__add__': ConvertAllProxy,
                '__sub__': ConvertAllProxy,
                '__mul__': ConvertAllProxy,
                '__rmul__': ConvertAllProxy,
                '__cmp__': ConvertAllProxy,
                '__lt__': ConvertAllProxy,
                '__gt__': ConvertAllProxy,
                '__len__': PassThroughProxy}

    def __new__(cls, value, unit):
        # generate a new subclass for value
        value_class = type(value)
        try:
            subcls = type(f'TaggedValue_of_{value_class.__name__}',
                          (cls, value_class), {})
            return object.__new__(subcls)
        except TypeError:
            return object.__new__(cls)

    def __init__(self, value, unit):
        self.value = value
        self.unit = unit
        self.proxy_target = self.value

    def __copy__(self):
        return TaggedValue(self.value, self.unit)

    def __getattribute__(self, name):
        if name.startswith('__'):
            return object.__getattribute__(self, name)
        variable = object.__getattribute__(self, 'value')
        if hasattr(variable, name) and name not in self.__class__.__dict__:
            return getattr(variable, name)
        return object.__getattribute__(self, name)

    def __array__(self, dtype=object, copy=False):
        return np.asarray(self.value, dtype)

    def __array_wrap__(self, array, context=None, return_scalar=False):
        return TaggedValue(array, self.unit)

    def __repr__(self):
        return f'TaggedValue({self.value!r}, {self.unit!r})'

    def __str__(self):
        return f"{self.value} in {self.unit}"

    def __len__(self):
        return len(self.value)

    if parse_version(np.__version__) >= parse_version('1.20'):
        def __getitem__(self, key):
            return TaggedValue(self.value[key], self.unit)

    def __iter__(self):
        # Return a generator expression rather than use `yield`, so that
        # TypeError is raised by iter(self) if appropriate when checking for
        # iterability.
        return (TaggedValue(inner, self.unit) for inner in self.value)

    def get_compressed_copy(self, mask):
        new_value = np.ma.masked_array(self.value, mask=mask).compressed()
        return TaggedValue(new_value, self.unit)

    def convert_to(self, unit):
        if unit == self.unit or not unit:
            return self
        try:
            new_value = self.unit.convert_value_to(self.value, unit)
        except AttributeError:
            new_value = self
        return TaggedValue(new_value, unit)

    def get_value(self):
        return self.value

    def get_unit(self):
        return self.unit


class BasicUnit:
    # numpy scalars convert eager and np.float64(2) * BasicUnit('cm')
    # would thus return a numpy scalar. To avoid this, we increase the
    # priority of the BasicUnit.
    __array_priority__ = np.float64(0).__array_priority__ + 1

    def __init__(self, name, fullname=None):
        self.name = name
        if fullname is None:
            fullname = name
        self.fullname = fullname
        self.conversions = dict()

    def __repr__(self):
        return f'BasicUnit({self.name})'

    def __str__(self):
        return self.fullname

    def __call__(self, value):
        return TaggedValue(value, self)

    def __mul__(self, rhs):
        value = rhs
        unit = self
        if hasattr(rhs, 'get_unit'):
            value = rhs.get_value()
            unit = rhs.get_unit()
            unit = unit_resolver('__mul__', (self, unit))
        if unit is NotImplemented:
            return NotImplemented
        return TaggedValue(value, unit)

    def __rmul__(self, lhs):
        return self*lhs

    def __array_wrap__(self, array, context=None, return_scalar=False):
        return TaggedValue(array, self)

    def __array__(self, t=None, context=None, copy=False):
        ret = np.array(1)
        if t is not None:
            return ret.astype(t)
        else:
            return ret

    def add_conversion_factor(self, unit, factor):
        def convert(x):
            return x*factor
        self.conversions[unit] = convert

    def add_conversion_fn(self, unit, fn):
        self.conversions[unit] = fn

    def get_conversion_fn(self, unit):
        return self.conversions[unit]

    def convert_value_to(self, value, unit):
        conversion_fn = self.conversions[unit]
        ret = conversion_fn(value)
        return ret

    def get_unit(self):
        return self


class UnitResolver:
    def addition_rule(self, units):
        for unit_1, unit_2 in itertools.pairwise(units):
            if unit_1 != unit_2:
                return NotImplemented
        return units[0]

    def multiplication_rule(self, units):
        non_null = [u for u in units if u]
        if len(non_null) > 1:
            return NotImplemented
        return non_null[0]

    op_dict = {
        '__mul__': multiplication_rule,
        '__rmul__': multiplication_rule,
        '__add__': addition_rule,
        '__radd__': addition_rule,
        '__sub__': addition_rule,
        '__rsub__': addition_rule}

    def __call__(self, operation, units):
        if operation not in self.op_dict:
            return NotImplemented

        return self.op_dict[operation](self, units)


unit_resolver = UnitResolver()

cm = BasicUnit('cm', 'centimeters')
inch = BasicUnit('inch', 'inches')
inch.add_conversion_factor(cm, 2.54)
cm.add_conversion_factor(inch, 1/2.54)

radians = BasicUnit('rad', 'radians')
degrees = BasicUnit('deg', 'degrees')
radians.add_conversion_factor(degrees, 180.0/np.pi)
degrees.add_conversion_factor(radians, np.pi/180.0)

secs = BasicUnit('s', 'seconds')
hertz = BasicUnit('Hz', 'Hertz')
minutes = BasicUnit('min', 'minutes')

secs.add_conversion_fn(hertz, lambda x: 1./x)
secs.add_conversion_factor(minutes, 1/60.0)


# radians formatting
def rad_fn(x, pos=None):
    if x >= 0:
        n = int((x / np.pi) * 2.0 + 0.25)
    else:
        n = int((x / np.pi) * 2.0 - 0.25)

    if n == 0:
        return '0'
    elif n == 1:
        return r'$\pi/2$'
    elif n == 2:
        return r'$\pi$'
    elif n == -1:
        return r'$-\pi/2$'
    elif n == -2:
        return r'$-\pi$'
    elif n % 2 == 0:
        return fr'${n//2}\pi$'
    else:
        return fr'${n}\pi/2$'


class BasicUnitConverter(units.ConversionInterface):
    @staticmethod
    def axisinfo(unit, axis):
        """Return AxisInfo instance for x and unit."""

        if unit == radians:
            return units.AxisInfo(
                majloc=ticker.MultipleLocator(base=np.pi/2),
                majfmt=ticker.FuncFormatter(rad_fn),
                label=unit.fullname,
            )
        elif unit == degrees:
            return units.AxisInfo(
                majloc=ticker.AutoLocator(),
                majfmt=ticker.FormatStrFormatter(r'$%i^\circ$'),
                label=unit.fullname,
            )
        elif unit is not None:
            if hasattr(unit, 'fullname'):
                return units.AxisInfo(label=unit.fullname)
            elif hasattr(unit, 'unit'):
                return units.AxisInfo(label=unit.unit.fullname)
        return None

    @staticmethod
    def convert(val, unit, axis):
        if np.iterable(val):
            if isinstance(val, np.ma.MaskedArray):
                val = val.astype(float).filled(np.nan)
            out = np.empty(len(val))
            for i, thisval in enumerate(val):
                if np.ma.is_masked(thisval):
                    out[i] = np.nan
                else:
                    try:
                        out[i] = thisval.convert_to(unit).get_value()
                    except AttributeError:
                        out[i] = thisval
            return out
        if np.ma.is_masked(val):
            return np.nan
        else:
            return val.convert_to(unit).get_value()

    @staticmethod
    def default_units(x, axis):
        """Return the default unit for x or None."""
        if np.iterable(x):
            for thisx in x:
                return thisx.unit
        return x.unit


def cos(x):
    if np.iterable(x):
        return [math.cos(val.convert_to(radians).get_value()) for val in x]
    else:
        return math.cos(x.convert_to(radians).get_value())


units.registry[BasicUnit] = units.registry[TaggedValue] = BasicUnitConverter()

Gallery generated by Sphinx-Gallery