jax.nn.sparse_sigmoid#
- jax.nn.sparse_sigmoid(x)[source]#
Sparse sigmoid activation function.
Computes the function:
\[\begin{split}\mathrm{sparse\_sigmoid}(x) = \begin{cases} 0, & x \leq -1\\ \frac{1}{2}(x+1), & -1 < x < 1 \\ 1, & 1 \leq x \end{cases}\end{split}\]This is the twin function of the
sigmoid
activation ensuring a zero output for inputs less than -1, a 1 output for inputs greater than 1, and a linear output for inputs between -1 and 1. It is the derivative ofsparse_plus
.For more information, see Learning with Fenchel-Young Losses (section 6.2).
- Parameters:
x (ArrayLike) – input array
- Returns:
An array.
- Return type:
See also