jax.numpy.linalg.cross#
- jax.numpy.linalg.cross(x1, x2, /, *, axis=-1)[source]#
Compute the cross-product of two 3D vectors
JAX implementation of
numpy.linalg.cross()
- Parameters:
x1 (ArrayLike) – N-dimensional array, with
x1.shape[axis] == 3
x2 (ArrayLike) – N-dimensional array, with
x2.shape[axis] == 3
, and other axes broadcast-compatible withx1
.axis – axis along which to take the cross product (default: -1).
- Returns:
array containing the result of the cross-product
See also
jax.numpy.cross()
: more flexible cross-product API.Examples
Showing that \(\hat{x} \times \hat{y} = \hat{z}\):
>>> x = jnp.array([1., 0., 0.]) >>> y = jnp.array([0., 1., 0.]) >>> jnp.linalg.cross(x, y) Array([0., 0., 1.], dtype=float32)
Cross product of \(\hat{x}\) with all three standard unit vectors, via broadcasting:
>>> xyz = jnp.eye(3) >>> jnp.linalg.cross(x, xyz, axis=-1) Array([[ 0., 0., 0.], [ 0., 0., 1.], [ 0., -1., 0.]], dtype=float32)