jax.numpy.linalg.svdvals#
- jax.numpy.linalg.svdvals(x, /)[source]#
Compute the singular values of a matrix.
JAX implementation of
numpy.linalg.svdvals()
.- Parameters:
x (ArrayLike) – array of shape
(..., M, N)
for which singular values will be computed.- Returns:
array of singular values of shape
(..., K)
withK = min(M, N)
.- Return type:
See also
jax.numpy.linalg.svd()
: compute singular values and singular vectorsExamples
>>> x = jnp.array([[1, 2, 3], ... [4, 5, 6]]) >>> jnp.linalg.svdvals(x) Array([9.508031 , 0.7728694], dtype=float32)