jax.numpy.linalg.vecdot#
- jax.numpy.linalg.vecdot(x1, x2, /, *, axis=-1, precision=None, preferred_element_type=None)[source]#
Compute the (batched) vector conjugate dot product of two arrays.
JAX implementation of
numpy.linalg.vecdot()
.- Parameters:
x1 (ArrayLike) – left-hand side array.
x2 (ArrayLike) – right-hand side array. Size of
x2[axis]
must match size ofx1[axis]
, and remaining dimensions must be broadcast-compatible.axis (int) – axis along which to compute the dot product (default: -1)
precision (PrecisionLike | None) – either
None
(default), which means the default precision for the backend, aPrecision
enum value (Precision.DEFAULT
,Precision.HIGH
orPrecision.HIGHEST
) or a tuple of two such values indicating precision ofx1
andx2
.preferred_element_type (DTypeLike | None | None) – either
None
(default), which means the default accumulation type for the input types, or a datatype, indicating to accumulate results to and return a result with that datatype.
- Returns:
array containing the conjugate dot product of
x1
andx2
alongaxis
. The non-contracted dimensions are broadcast together.- Return type:
See also
jax.numpy.vecdot()
: similar API in thejax.numpy
namespace.jax.numpy.linalg.matmul()
: matrix multiplication.jax.numpy.linalg.tensordot()
: general tensor dot product.
Examples
Vector dot product of two 1D arrays:
>>> x1 = jnp.array([1, 2, 3]) >>> x2 = jnp.array([4, 5, 6]) >>> jnp.linalg.vecdot(x1, x2) Array(32, dtype=int32)
Batched vector dot product of two 2D arrays:
>>> x1 = jnp.array([[1, 2, 3], ... [4, 5, 6]]) >>> x2 = jnp.array([[2, 3, 4]]) >>> jnp.linalg.vecdot(x1, x2, axis=-1) Array([20, 47], dtype=int32)