jax.numpy.max#
- jax.numpy.max(a, axis=None, out=None, keepdims=False, initial=None, where=None)[source]#
Return the maximum of the array elements along a given axis.
JAX implementation of
numpy.max()
.- Parameters:
a (ArrayLike) – Input array.
axis (Axis | None) – int or array, default=None. Axis along which the maximum to be computed. If None, the maximum is computed along all the axes.
keepdims (bool) – bool, default=False. If true, reduced axes are left in the result with size 1.
initial (ArrayLike | None | None) – int or array, default=None. Initial value for the maximum.
where (ArrayLike | None | None) – int or array of boolean dtype, default=None. The elements to be used in the maximum. Array should be broadcast compatible to the input.
initial
must be specified whenwhere
is used.out (None | None) – Unused by JAX.
- Returns:
An array of maximum values along the given axis.
- Return type:
See also
jax.numpy.min()
: Compute the minimum of array elements along a given axis.jax.numpy.sum()
: Compute the sum of array elements along a given axis.jax.numpy.prod()
: Compute the product of array elements along a given axis.
Examples
By default,
jnp.max
computes the maximum of elements along all the axes.>>> x = jnp.array([[9, 3, 4, 5], ... [5, 2, 7, 4], ... [8, 1, 3, 6]]) >>> jnp.max(x) Array(9, dtype=int32)
If
axis=1
, the maximum will be computed along axis 1.>>> jnp.max(x, axis=1) Array([9, 7, 8], dtype=int32)
If
keepdims=True
,ndim
of the output will be same of that of the input.>>> jnp.max(x, axis=1, keepdims=True) Array([[9], [7], [8]], dtype=int32)
To include only specific elements in computing the maximum, you can use
where
. It can either have same dimension as input>>> where=jnp.array([[0, 0, 1, 0], ... [0, 0, 1, 1], ... [1, 1, 1, 0]], dtype=bool) >>> jnp.max(x, axis=1, keepdims=True, initial=0, where=where) Array([[4], [7], [8]], dtype=int32)
or must be broadcast compatible with input.
>>> where = jnp.array([[False], ... [False], ... [False]]) >>> jnp.max(x, axis=0, keepdims=True, initial=0, where=where) Array([[0, 0, 0, 0]], dtype=int32)