jax.random.loggamma#
- jax.random.loggamma(key, a, shape=None, dtype=<class 'float'>)[source]#
Sample log-gamma random values with given shape and float dtype.
This function is implemented such that the following will hold for a dtype-appropriate tolerance:
np.testing.assert_allclose(jnp.exp(loggamma(*args)), gamma(*args), rtol=rtol)
The benefit of log-gamma is that for samples very close to zero (which occur frequently when a << 1) sampling in log space provides better precision.
- Parameters:
key (ArrayLike) – a PRNG key used as the random key.
a (RealArray) – a float or array of floats broadcast-compatible with
shape
representing the parameter of the distribution.shape (Shape | None | None) – optional, a tuple of nonnegative integers specifying the result shape. Must be broadcast-compatible with
a
. The default (None) produces a result shape equal toa.shape
.dtype (DTypeLikeFloat) – optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32).
- Returns:
A random array with the specified dtype and with shape given by
shape
ifshape
is not None, or else bya.shape
.- Return type:
See also
gamma : standard gamma sampler.