jax.scipy.stats.beta.logsf#
- jax.scipy.stats.beta.logsf(x, a, b, loc=0, scale=1)[source]#
Beta distribution log survival function.
JAX implementation of
scipy.stats.beta
logsf
.The survival function is defined as
\[f_{sf}(x, a, b) = 1 - f_{cdf}(x, a, b)\]where \(f_{cdf}(x, a, b)\) is the beta cumulative distribution function,
jax.scipy.stats.beta.cdf()
.- Parameters:
x (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, value at which to evaluate the SF
a (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution shape parameter
b (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution shape parameter
loc (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution offset parameter
scale (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution scale parameter
- Returns:
array of logsf values.
- Return type: