jax.scipy.stats.chi2.sf#
- jax.scipy.stats.chi2.sf(x, df, loc=0, scale=1)[source]#
Chi-square survival function.
JAX implementation of
scipy.stats.chi2
sf
.The survival function is defined as
\[f_{sf}(x, k) = 1 - f_{cdf}(x, k)\]where \(f_{cdf}(x, k)\) is the cumulative distribution function,
jax.scipy.stats.chi2.cdf()
. JAX follows the scipy convention of usingdf
to denote degrees of freedom.- Parameters:
x (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, value at which to evaluate the SF
df (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution shape parameter
loc (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution offset parameter
scale (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution scale parameter
- Returns:
array of sf values.
- Return type: