jax.scipy.stats.expon.logsf#
- jax.scipy.stats.expon.logsf(x, loc=0, scale=1)[source]#
Exponential log survival function.
JAX implementation of
scipy.stats.expon
logsf
.The survival function is defined as
\[f_{sf}(x) = 1 - f_{cdf}(x)\]where \(f_{cdf}(x)\) is the exponential cumulative distribution function,
jax.scipy.stats.expon.cdf()
.- Parameters:
x (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, value at which to evaluate the PDF
loc (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution offset parameter
scale (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution scale parameter
- Returns:
array of pdf values.
- Return type: