jax.scipy.stats.pareto.logpdf#
- jax.scipy.stats.pareto.logpdf(x, b, loc=0, scale=1)[source]#
Pareto log probability distribution function.
JAX implementation of
scipy.stats.pareto
logpdf
.The Pareto probability density function is given by
\[\begin{split}f(x, b) = \begin{cases} bx^{-(b+1)} & x \ge 1\\ 0 & x < 1 \end{cases}\end{split}\]and is defined for \(b > 0\).
- Parameters:
x (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, value at which to evaluate the PDF
b (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution shape parameter
loc (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution offset parameter
scale (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution scale parameter
- Returns:
array of logpdf values.
- Return type:
See also